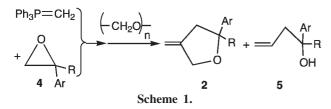
Novel Synthesis of 1,3-Disubstituted Alkyl- and Aralkylnaphthalenes from Methylenetriphenylphosphorane, 1,1-Disubstituted Epoxides, Paraformaldehyde, and Trimethylsilyl Triflate

Kentaro Okuma,* Yoshitaka Hirose, and Kosei Shioji

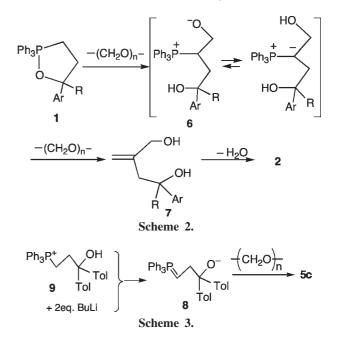

Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180

(Received January 10, 2002; CL-020035)

A novel approach toward the synthesis of 3-methylnaphthalenes is achieved by the reaction of 3-methylene-5,5-disubstituted tetrahydrofurans derived from methylenetriphenylphosphorane, 1,1-disubstituted epoxides and paraformaldehyde with trimethylsilyl trifluoromethanesulfonate in the presence of diisopropylethylamine.

Naphthalenes are important substances for their structural and biological aspects and their industrial uses.¹ The synthetic methods of naphthalenes include a thermal dehydroaromatization of hydrocarbons by using catalysts,² annulation initiated by the addition of a benzylic sulfone anion to methyl crotonate,³ ringclosure reaction of o-allylbenzamides with MeLi or LDA,⁴ and cycloaddition reaction of tetraarylcyclopentadienone with benzyne.^{3,5} These methods require higher reaction temperature (300–500 °C) or multi-step reactions. Recently, we have reported the novel formation of tetrahydropyrans from methylene-1,3dioxepanes.⁶ In the course of the synthetic application of 2,2,2triphenyl-2,1 λ^5 -oxaphospholanes (1), we have found unusual formation of exomethylenetetrahydrofurans (2) in the reaction with paraformaldehyde. We report herein a regiospecific synthesis of 1,3-disubstituted naphthalenes (3) from 2, trimethylsilyl trifluoromethanesulfonate, and diisopropylethylamine.

2,2-Disubstituted 4-methylenetetrahydrofurans (2) were synthesized by the reaction of methylenetriphenylphosphorane, 1,1-diphenylethylene oxide (4a), and paraformaldehyde. Treatment of methylenetriphenylphosphorane with 4a followed by the addition of paraformaldehyde in refluxing benzene resulted in the formation of 2a in 54% yield (Scheme 1). Other reactions were carried out in a similar manner (Table 1). In every cases, the corresponding homoallylic alcohols (5), normal Wittig reaction products, were obtained as side products.

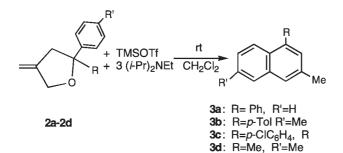

The reaction might proceed as follows: In refluxing benzene, ylide reacted with epoxide to give the corresponding oxaphospholane 1, which reacted with paraformaldehyde to give the corresponding betaine (6). Diol 7 was produced by attacking of another molar of formaldehyde, which finally dehydrated to afford 2 (Scheme 2).

Oxaphospholane 1 plays an important role for the formation of 2. If the present reaction was carried out by using γ -oxideylide

Table 1. One-pot synthesis of 4-methylenetetrahydrofurans 2^{a}

Epoxide 4	Products (Yields/%)										
Ar	R	Reaction Time/h	2	2		5					
Ph	Ph	1	2a	54	5a	21					
<i>p</i> -Tol	<i>p</i> -Tol	3	2b	42	5b	47					
p-ClC ₆ H ₄	p-ClC ₆ H ₄	. 2	2 c	42	5c	36					
Ph	Me	3	2d	50	5d	31					
3,4-(MeO) ₂ C ₆ H	₃ Me	3	2e	43	5e	25					

^aThe reaction was carried out in refluxing benzene.



(8) produced from 3,3-ditolyl-3-hydroxypropyltriphenylphosphonium iodide (9) and butyllithium, only the corresponding homoallylic alcohol **5b** was obtained in 86% yield (Scheme 3).

We first attempted ring opening reaction of **2** in the hope of obtaining diols. By using catalytic amount of HCl, trifluoromethanesulfonic acid, and trifluoroacetic acid, THF **2** led to unidentified polymeric mixtures. Gassman *et al.* found that the reaction of acetals with trimethylsilyl trifluoromethanesulfonate (TMSOTf) in the presence of diisopropylethylamine gave vinyl enol ethers in good yields.⁷ In view of these results, we then applied this method to tetrahydrofurans. THF **2a** was treated with TMSOTf in the presence of diisopropylethylamine at room temperature to give the corresponding naphthalene **3a** in 82% yield (Scheme 4). The results were summarized in Table 2. Three equivalent of diisopropylethylamine must be required for completion. Other bases such as triethylamine gave **3** in much

Copyright © 2002 The Chemical Society of Japan

Chemistry Letters 2002

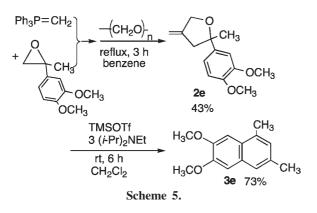
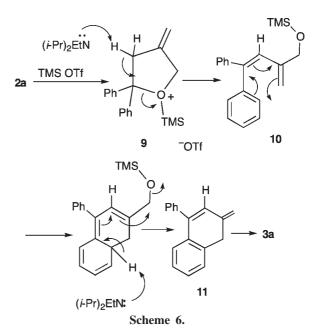


Table 2. Reaction of 1 with TMSOTf⁸

	2		Conditions		Product (Yield/%)	
	R	\mathbf{R}'	Time/h	Base/equiv		3
2a	Ph	Н	6	2	3a	36
2a	Ph	Н	6	3	3a	82
2b	<i>p</i> -Tol	Me	6	3	3 b	90
2c	p-ClC ₆ H ₄	Cl	6	3	3c	86
2d	Me	Η	6	3	3d	73

lower yields.

During the investigation on lignan group, Haworth and Atkinson reported the synthesis of 6,7-dimethoxy-1,3-dimethyl-naphthalene (3e) via six-step reactions from veratrylacetyl chloride.⁹ We then applied the present method to the synthesis of 3e starting from 3,4-dimethoxyacetophenone. As shown in Scheme 5, naphthalene 3e was synthesized regiospecifically.



A tentative mechanistic rationalization for the observed novel benzoannelation involves the initial attack of **1** with TMSOTf. The oxonium ion intermediate (**9**) thus formed was further attacked by a base to give diene (**10**). Rearrangement of **10** followed by proton abstraction gave an exomethylene compound (**11**), which finally produced naphthalene, **3** (Scheme 6).

We are currently continuing further investigation on the reaction and synthetic application of these compounds.

References and Notes

1 R. W. Alde, P. S. Bowman, W. R. Steele, and D. R.

Winterman, J. Chem. Soc., Chem. Commun., **1968**, 723. For a review, see N. Campbell, "Rodd's Chemistry of Carbon Compounds," ed. by S. Coffey, Elzsevier, Amsterdam (1978), Vol. IIIg, Chap. 27.

- R. P. Linstead and S. L. S. Thomas, *J. Chem. Soc.*, **1940**, 1127;
 H. M. Liu, B. L. Tian, and Y. D. Xu, *Appl. Catal.*, *A*, **213**, 103 (2001);
 A. T. Mathauser and A. V. Teplyakov, *Catal. Lett.*, **73**, 207 (2001).
- 3 T. T. Hoye, M. Chen, B. Hoang, L. Mi, and O. P. Priest, J. Org. Chem., 64, 7184 (1999).
- 4 M. P. Sibi, J. W. Dankwardt, and V. Snieckus, J. Org. Chem., 51, 271 (1986).
- 5 F. M. Beringer and S. J. Huang, J. Org. Chem., 29, 445 (1964).
- 6 K. Okuma, S. Hayano, K. Shioji, and H. Matsuyama, *Tetrahedron Lett.*, **41**, 2171 (2000).
- 7 P. G. Gassman, S. J. Burns, and K. B. Pfister, J. Org. Chem., 58, 1449 (1993).
- 8 Satisfactory mass spectra and/or elemental analyses were obtained for all new compounds. Selected ¹H NMR data of **2b** and **3c**. **2b**: ¹H NMR (CDCl₃) $\delta = 2.29$ (s, 6 H, ArMe), 3.22 (br s, 2 H, CH₂), 4.43 (br s, 2H, CH₂), 4.83 (br s, 1 H, = C<u>H</u>H), 4.99 (br s, 1 H, = C<u>H</u>H), 7.09 (d, 4 H, J = 8 Hz, p-Tol). **3c**: ¹H NMR (CDCl₃) $\delta = 2.53$ (s, 3 H, ArMe), 7.22 (br s, 1 H, Ar), 7.29 (dd, 1 H, J = 2 and 8 Hz, Ar), 7.38 (d, 2 H, J = 8 Hz, p-ClC₆H₄-), 7.45 (d, 2 H, J = 8 Hz, Ar), 7.79 (s, 1 H, Ar). **3e**: ¹H NMR (CDCl₃) $\delta = 2.43$ (Me), 2.60 (Me), 3.99 (OMe), 4.01 (OMe), 7.04 (br s, Ar-H), 7.06 (br s, Ar), 7.16 (br s, Ar), 7.34 (br s, Ar).
- 9 R. D. Haworth and J. R. Atkinson, J. Chem. Soc., 1938, 767.